

Leading Your Firm in the Digital Ecosystem:

What You Need to Know About Ai, Metaverse, Smart Contracts, Cryptos, and NFT's

Geoffrey M. Williams, CLM. MBA, M.Div. Chief Operating Officer and CFO ALA 2022-23 President-Elect Cunningham Bounds, LLC

OCTOBER 13–14, 2022 Hamilton Hotel, Washington, D.C.

Hello!

Let's Find Out ...

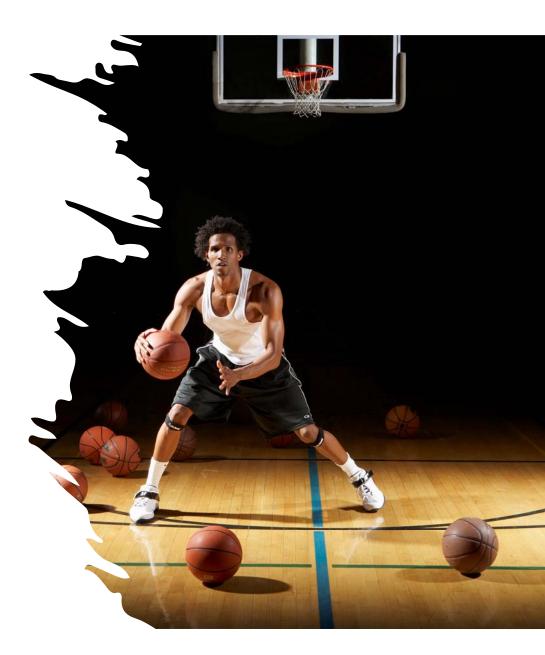
Who is in the room?

Why are you attending this session?

What do you want to learn?

Session Goals

- Leadership Focused vs. Technology Focused
- Familiarize With Emerging Technology in the Digital Ecosystem
- Explore the Effect on the Business of Law
- Equip Legal Management Professionals to Discuss With Stakeholders and Make Decisions
- Learn What Others are Doing in their Firms in this Space


After the Session Questions:

Technical Details

Cryptocurrency Trading or Current Market Conditions

Specific Digital Ecosystem Software or Companies

Think of something to ask later? gmw@CunninghamBounds.com

Principle Strategic Question

• Is Your Business, Law Firm, IP Practice:

Dependent on Today's World?Innovating to Serve Tomorrow's World?

Tomorrow's World: Tomorrow is Too Late

Service Industrialization – "Technology and 'industrialization' are reshaping services they did manufacturing" – UCLA Anderson Review
Virtualization
Digital Economy
Social Economy
Self-Service
Automation
Commoditization
Information Ubiquity
Decentralization
Pervasive Dunning-Kruger Effect (Expert Syndrome)

Leadership in the Digital Age

- Profitability and Survival
- Sustainability Transformative
 Digital Thinking
- Solving Problems/Needs
- Utilization and Efficiency
- Inclusivity Barriers, Access, Disability, Communication
- <u>Humanization</u> Innovation, Motivation, Facilitation, Assimilation

Leadership vs. Status Quo

 "Customer expectations are far exceeding what you can really do. That means a fundamental rethinking about what we do with technology in organizations."

> -George Westerman | MIT Principal Research Scientist and Author

 "As a director, if you're not asking questions about how your organization is navigating and plugging into disruption, forming new ecosystems, and tapping into open markets, then your organization is at risk."

> -Andrew Vaz | Global Chief Innovation Officer at Deloitte

Some Key Terms and Concepts

The Language and Technology of the Digital Future of Work

Here Are Today's Categories

- Digital Ecosystem
- Ai
- Gold and Cryptocurrency
- Distributed ledger
- Blockchain
- NFT
- Metaverse
- Token
- Smart Contracts
- Wallet
- Web3 Web1- Static; Web2- Participatory; Web3- Metaverse

The Digital Ecosystem

"A <u>network</u> of <u>stakeholders</u> (partners, products, suppliers, applications, and thirdparty data services) that are <u>interconnected</u> in a <u>digital space</u>." – Bynder

You Already Participate

 "Digital technology is so broad today as to encompass almost everything. No product is made today, no person moves today, nothing is collected, analyzed or communicated without some 'digital technology' being an integral part of it. - Louis Rossetto, Wired

Why the Digital Ecosystem Matters

- Strategic Advantage / Avoid Obsolescence
 - Client Demand
 - Emerging and Dying Industries
 - Emerging Areas of Law
- Radical Disruptive Innovation
- Global Ubiquity

This Photo by Unknown Author is licensed under CC BY-SA

Your Attorneys and the Digital Ecosystem:

- Don't Know Anything, Dismissive or Engaged and Using
- Irrelevant to Law or Developing Areas of Law
- Invested and Secretive or Invested and Obsessed
- Intrigued but Wait and See or Entrepreneurial and Ready to Exploit

What About You?

Can You Talk to Attorneys Who:

Don't Know Anything, Dismissive or Engaged and Using

Irrelevant to Law or Developing Areas of Law

Invested and Secretive or Invested and Obsessed

Intrigued but Uniformed to Entrepreneurial and Ready to Exploit

 $\begin{array}{c|c} y_n \neq 0 & B_y \\ \vdots \\ y_n \neq 0 & B_x \\ \vdots \\ y_n \end{pmatrix} \begin{pmatrix} n \in \mathcal{N} & t_0 \\ y_n \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \\ df \\ y_n \end{pmatrix} n \in \mathcal{N}, \quad A > 0, \Rightarrow \\ \begin{array}{c} lim & n / A = 1 \\ n \to \infty \end{array}$ $\begin{array}{c} y_n \neq 0 & B_x \\ y_n \end{pmatrix} \begin{pmatrix} y_n \\ y_n \end{pmatrix} \\ df \\ y_n \end{pmatrix} n \in \mathcal{N}, \quad A > 0, \Rightarrow \\ \begin{array}{c} lim & n / A = 1 \\ n \to \infty \end{array}$ $\begin{array}{c} y_n \neq 0 & B_x \\ y_n \end{pmatrix} \\ \begin{array}{c} y_n \end{pmatrix} \\ df \\ y_n \end{pmatrix} \\ n \in \mathcal{N}, \quad A > 0, \Rightarrow \\ \begin{array}{c} n \in \mathcal{N}, \quad A > 0, \Rightarrow \\ n \to \infty \end{array}$ $\begin{array}{c} lim & n / A = 1 \\ n \to \infty \end{array}$ $\begin{array}{c} y_n \neq 0 \\ n \to \infty \end{array}$ $\begin{array}{c} y_n \neq 0 \\ h \to 0 \\$ $y_n \neq 0 <=> y_n \neq 0 B_y$ N→R x:p $\int (x)^{\langle z \rangle} = \frac{1}{2} g \in [0,1]: \forall x, x \in \mathcal{X}]$ $\int (x_n - g)^{\langle \varepsilon} n \ge n_o: (x_n - g)^{\langle \varepsilon \rangle} = \frac{1}{2} \int (x_n - g)^{\langle \varepsilon \rangle} dx$ lok. $\mathcal{X}_{n}: \mathcal{N} \rightarrow \mathcal{R}$ min $x_n \leq y_n \leq z_n$ €[0,1) n->00 $\{x_n\}$

Artificial Intelligence

fx 7 n 0+0+0

Machines that mimic human intelligence to perform tasks and enhance human capabilities and can adapt to input behavior (i.e. Alexa, Siri, Ads)

 $f(x), f(x') \leq c$

This Photo by Unknown Author is licensed under CC BY

5

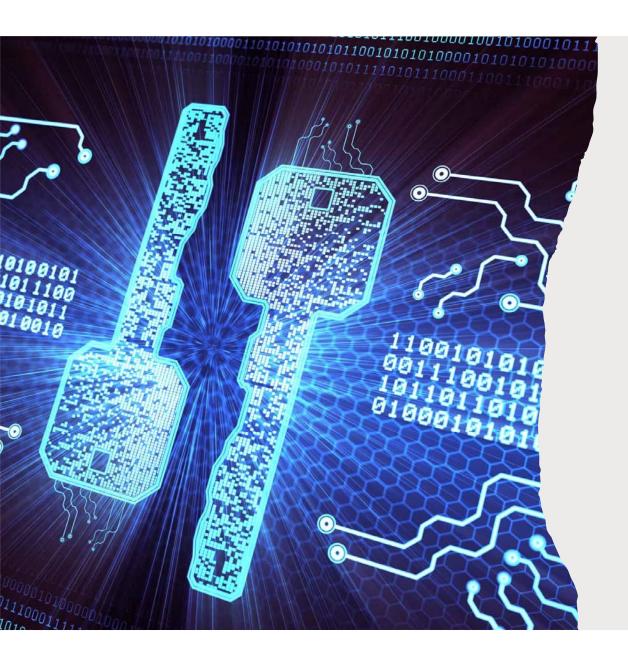
Ai in Law Firms Saves Time

- Chat Bots
- Document Review: Find common or missing language, terms, compliance items
- Automation in data collection, parsing, sorting, patterns
- Insight into activities and practices of opposing counsel on matters
- Predict outcomes and timelines based on previous common threads related to counsel, rulings, judges, similar matters

Ai Analytics Advantages

- Firm Advantage: Leverage Collective Work Product and Experience in Your Firm
- Preemptive Advice to Manage Risk vs. Litigation Outcomes Afterwards
- Equity: Newer, Better, Lower Cost Legal Services, More Served
- From Anecdotal to Data Driven Legal Practice
- Predict Matter Costs and Outcomes
- Discovery

Challenges


- Expensive
- Not Perfect
- Setup Flaws
- Algorithm Bias (i.e. Offender Profiling for Recidivism)
- Adoption Fear: Lawyers Fear Losing Jobs

Cryptocurrency

- What is it
- Value
- Volatility
- Security

This Photo by Unknown Author is licensed under CC BY-NC-ND

Cryptocurrency

- Digital Currency or Token
- Medium of Exchange
- Accessing a Peer-to-Peer Database to Confirm Transactions
- Using Cryptography
- A Peer-to-Peer Digital Payment System Confirmed by Network Participants

This Photo by Unknown Author is licensed under CC BY-ND

Cryptocurrency

- Digital Currency or Token (Bitcoin, Alt-coins Such as Ethereum, Litecoin, etc)
- Medium of Exchange (Digital Transactions)
- Accessing a Peer-to-Peer Database (Distributed Computer Network Ledger)
- ...to Confirm Transactions (Blockchain vs Banks, Governments, etc)
- Using Cryptography (Encryption for Security)
- A Peer-to-Peer Digital Payment System Confirmed by Network Participants
- Digital Coins Have a Market Value Similar to Stocks
- Stored in Digital Wallets or on Exchanges

Things to Know

- Many Networks Competition, Utility, Functionality (Computer Code)
- Attractive for Time, Cost, International Trade Value
 - Traditional Wires 1-5 Days During Banking Hours, Middlemen, Exchange Rates
 - Crypto Exchange Seconds to Minutes Anytime, Common Value
- Volatile Market Creates Volatile Value and Risk
- Online Exchanges Could Be Hacked
- Fees and Tax Effects

Gold is Money? Do You Have Any On You?

• Bartering (User Deemed Value)

NONOPOL

- Rare Rocks (Local Esteemed Value)
- Shekels (Better than Rocks)

10

20

NONOPOLL

JONOPOLL

500

MONO

HONOPOLY

- Gold Coins (Government Designated Value)
- Gold Backed Banknotes (Gold Trading)
- Various Country Backed Banknotes (Cooperative Value)
- Digits in an Account (Designated Value)
- Cryptocurrency (Universal Value)

This Photo by Unknown Author is licensed under CC BY

Smart Contracts

- Digital Contracts (code) with Conditions
- Executed Automatically When Conditions Met
- Using Blockchains
- No Human Intervention or Time Loss
- Unchangeable
- Certain Execution
- No Fees
- Imagine No Billing and Collection Activities in Your Firm
- Practice Areas

NFT

- Non-Fungible Token
- Non-Fungible = Unique and Irreplaceable
- Token = Tradable Code Using Blockchains
- Art, Music, Digital Information
- Represents Ownership of Unique or Scarce Item
- Conceptual Examples:
 - Vehicle Title
 - Collectible Items Such as Baseball Cards
 - Artwork at a Museum vs Owner's Gallery

NFT and Legal

- Copyright and Trademark
- Intellectual Property Licensing
- Entertainment Transactions
- Securities
- Privacy

This Photo by Unknown Author is licensed under CC BY-SA

Metaverse

PARK

"It is the combined network of 3D virtual worlds in which people work, play and socialize." – Law.com

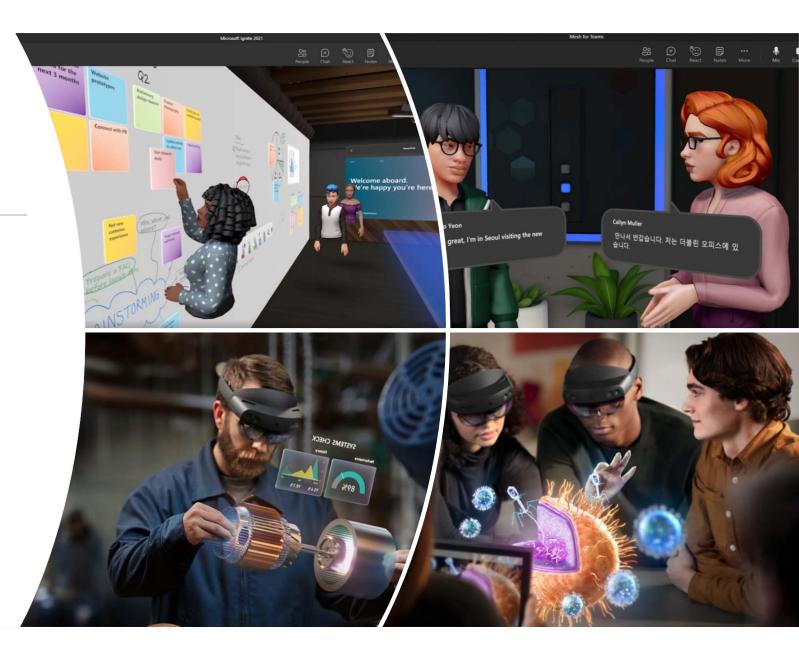
LIFE

ITE

-

0

Digital Reality, Worlds, Connections, Events, Commerce, Real Estate

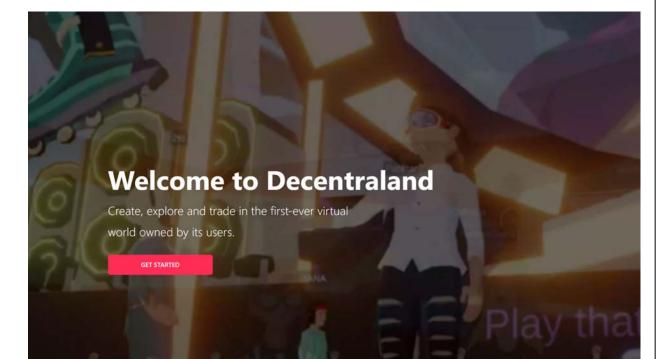

The Future Was in Movies

The Future is Here Fast

- Virtual Reality
- Augmented Reality
- Mixed Reality

USES:

- Communication
- Client Interactions
- Meetings
- Collaboration
- Mediations
- Trials
- Learning



Some Recent Equivalent Migrations

- Landline to Cellular
- Snail Mail and Fax to E-Mail
- Telephone Conferencing to Video Conferencing
- Office Meetings to Zoom
- Day planner to Smartphone
- Photo Film to Digital Picture
- Typewriter to Keyboard and to Voice Recognition

Meta Law Firms

Grungo Colarulo – First Pl Firm in the Metaverse Arent Fox – First "Big Law" Firm in the Metaverse

"Arent Fox's virtual offices will be a place where lawyers can meet with clients for business or socializing."

"We don't know what the metaverse will be in five years, but we're not waiting five years to find out."

-Anthony Lupo, Chair, Arent Fox Law Firm

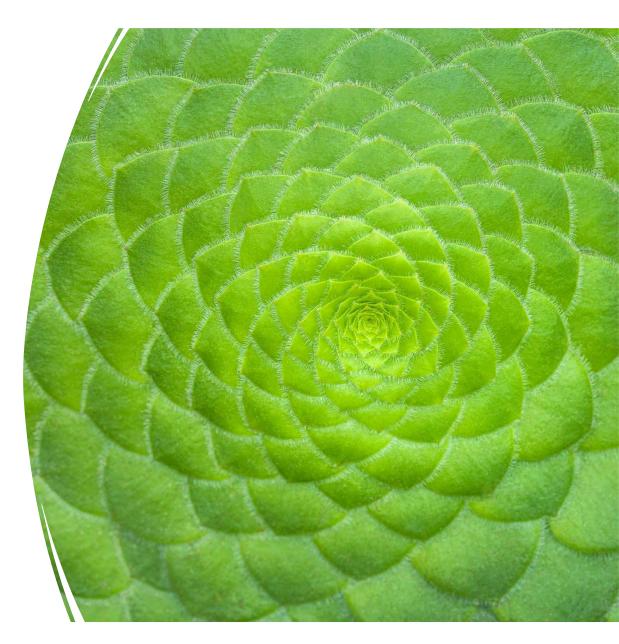
Blockchain, Ai, and Law

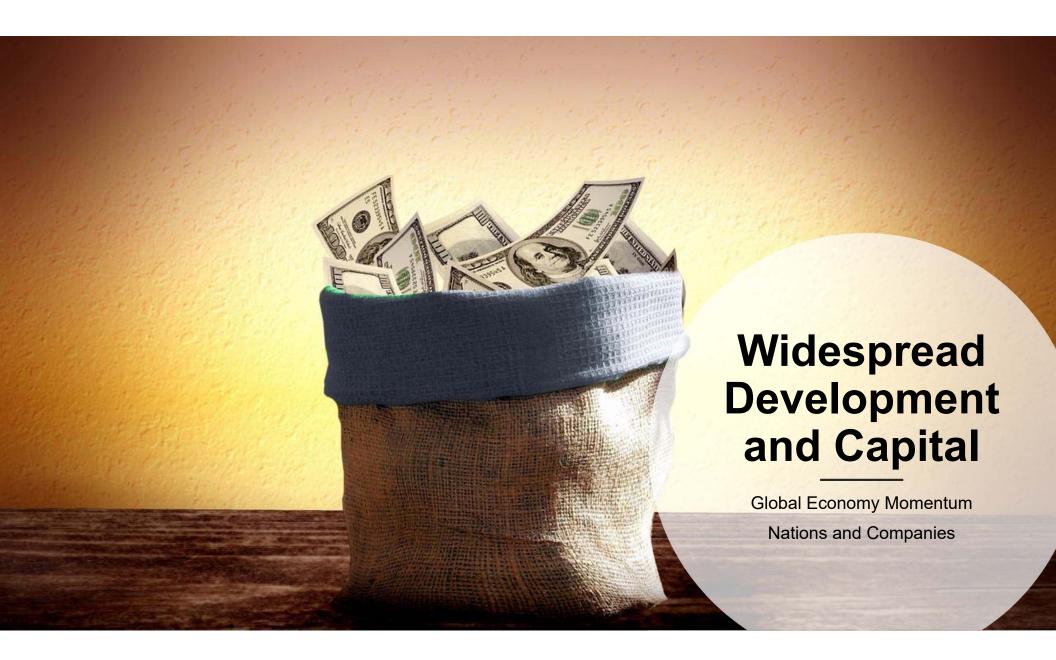
More Transparent, Efficient, Automated, Secure Services

- Shared ledger accessible by all parties to an agreement, compliance built-in, no misinterpretation, tamper-proof
- Digitally signed and immutably stored agreements
- Automate administrative tasks and transactional work

2018 Legal Trends Report by Clio, 48% of time spent

Applicability of Current Law?




Emerging and Changing Practice Areas – Blind Justice

Transactional, Contracts, Structured Settlements Intellectual Property Banking Arbitration and Court Decisions Criminal International Trade Tax

Still Immature

- From Unknown to Known
- Misunderstood to Understood
- Skeptical to Acceptance
- Risky to More Secure
- Uncertainty to Necessary
- No Relevance to Mission Critical
- Impractical to Convenient
- Ubiquity= Mission Critical, Convenient, Known, Understood, Secure

Still Resisted and Risky: Disruptive to Profitable Industries

Quantum Leap in Commerce Structures and Practices

(Parties Deal Directly With One Another)

Have a Business Case for Adoption

- Firm/Organization Driven
 Innovation
- Client Driven Need
- Firm/Organization Management Need
- Strategic Need or Opportunity
- How is Your Firm Engaging in These Technologies?

Selecting Ecosystem Business Partners

Marketing vs Delivery

Use the Technology; Anyone Can Buy Technology

Innovation in Processes vs Doing Faster

Return on Investment

Problems That are Solved

Developer Partnerships (Creating vs. Reacting)

Developments, Needs, Challenges

- GPR: Global Patent Registry First Blockchain Registry
 - Transparency for Patent Ownership and Identification
- Need for Immediate Digital Market Introduction
- Need for Managing and Valuing IP Assets and Risks
- Simplified and Cost-Efficient IP Asset Transactions (Licensing, Sales, Acquisitions)
- Effect of Blockchain and Digital Ecosystem on Domestic and Foreign Filing?

Questions?

"Do Something Today to Make Tomorrow Better"

THANK YOU!

Geoffrey M. Williams, CLM, MBA, M.Div. COO/CFO Cunningham Bounds, LLC gmw@cunninghambounds.com

n https://www.linkedin.com/in/geoffreymwilliams